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An Analytical Solution to the Microstrip
Line Problem

DOREL HOMENTCOVSCHI

Abstract —An analytical method to determine the capacitance of mi-
crostrip lines in an inhomogeneous medium is presented. The capaci-
tance is expressed in terms of the solution of an infinite system of linear
equations. The numerical examples included provide a very good ap-
proximation for cases of practical interest.

I. InTrRODUCTION

ICROSCOPIC transmission lines have been the

subject to theoretical and experimental investiga-
tion for more than 30 years. Although the literature on
this subject is extensive, analytical exact solutions, for the
case when two different dielectrics are present, have
received consideration only recently [13], [14].

It is well known that in the case of nonhomogeneous
dielectrics microstrip lines do not support a TEM mode.
However, for frequencies that are not too high (in the
“quasi-static limit”), the propagation can be thought of as
approximately TEM. In this paper we consider this quasi-
TEM mode.

Let us first briefly review some theoretical methods
relating to a microstrip line with two dielectrics. Wheeler
[1] used approximate conformal mapping and an interpo-
lation technique to calculate the capacitance of a mixed
dielectric media microstrip. Sylvester [2] and Bryant and
Weiss [3] treated the dielectric vacaum boundary by means
of a dielectric Green’s function. Yamashita and Mittra [4]
presented an analysis based on a variational principle.
Analyses of various planar transmission lines have been
carried out in the spectral domain by Itoh and Mittra [5]
and Itoh [6]. Poh et al. [7] considered the solution for the
line capacitance of a microstrip line by means of a spec-
tral-domain analysis method.

The present paper provides a new analytical method
for determining the line capacitance of a microstrip line.
The solution is exact but it is expressed by means of the
solution of an infinite system of linear equations whose
coefficients arc the result of certain numerical quadra-
tures. The analysis is carried out for the case of two
dielectric substrates. Changes to include additional strati-
fied layers are readily available using the transfer matrix
method described in [8].
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Comparison of the results obtained by using the pro-
posed formula with those obtained by exact formulas
(available in particular cases) shows that in cases of prac-
tical interest it is sufficient to consider only the first two
equations in the above-mentioned infinite set of linear
equations.

II. ProBLEM FORMULATION

The cross section of the shielded microstrip line to be
analyzed in this paper is shown in Fig. 1. It consists of a
conducting strip of zero thickness placed on a dielectric
substrate (on the [~ b, b] segment of the O, axis) between
two parallel ground planes. The relative dielectric con-
stants, €, and €,, and the dielectric thicknesses, 4; and
h,, are arbitrary. In particular, as h; - we obtain the
open microstrip.

We consider the solution of the microstrip problem in
the “quasi-static” approximation, i.e., for the frequency
range in which propagation may be regarded as approxi-
mately TEM. For the microstrip dimensions and substrate
materials frequently used in integrated microwave circuit
technology, the quasi-TEM approximation is valid in the
range extending to the low gigahertz region. For higher
frequencies, the solution can be taken as the basis for
solving the full propagation problem.

In the quasi-TEM state, the electric field in domains
D, and D, can be expressed with the aid of the electro-
static potentials VD(x, y) and V' ®(x, y). We write

oo sinhk(h, — y)

@ = | A(k) ————

V(x,y) fo () cos (R dk (1)
) sinh k(h, + y)

@ _

V(x,y) fOA(k) sinh K cos (kx) dk. (2)

The functions ¥V®(x,y) and V@(x,y) vanish on the
planes y = i, and y = — h,, respectively, and satisfy the
potential continuity condition on the circuit plane y = 0.
We also have

—-b<x<b

[ A(k) cos (k) dk = vy, (3)
0

V, being the potential of the strip.
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Fig. 1. Geometry of the problem.

The charge density p(x) on the plane y =0 is given by
the formula
o W
- +e,—/ »
€ 7y (x,0)+e, P (x,0)

p(x)=

= [ kA(k){e; coth (khy) + e coth (khy)) cos (ke) dk.
(4)

Since the function p(x) vanishes on the semiaxis
(—w, — b) (b,®) relation (4) yields

[ A(k){ey coth (khy) + e, coth (khz)) sin (k) dk
0

q
=—-§sgnx, x€(—w,—b)U(b,=) (5)
where sgnx=—1 for x <0 and sgnx=1 for x> 0. In

obtaining relation (5) we took into account the even
character of the function p(x). Hence

[ plx)ds =g, (6)

where ¢, is the total charge of the strip.
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The functions {(k) and n(k) decay exponentially for large
values of the variable k.
Equations (3) and (4) become

fwB(k)cos(lcx) dk = (e, + &)V,
0
+ [ BUYm(k) cos (k) dk,
0
—-b<x<b (10)
f:B(k) sin(kx) dk = %gsgnx

forxe(—w,—b)U(b,>). (11)
Relations (10) and (11) are the dual integral equations of
the problem.

IIL.

We look for the solution of the dual integral equations
(10) and (11) in the form

B(k)——{ To( bk

SoLuTION OF THE INTEGRAL EQUATIONS

Zzb

2c6(k)}
n=1
(12)
where 8(k) is the Dirac function, ¢=0.577216...is the
Edler constant, and b, are real coefficients to be deter-
mined. In fact, the form (12) of the solution can be
obtained by means of certain intricate mathematical con-
siderations concerning the Riemann boundary-value prob-
lem equivalent to the dual integral equations (10) and (11).
We use now the relations

fw{ JO(]fk) +2c5(k)} sin (kx) dk = g sgn x

0
for |x|>b (13)

fm{ JO(]fk) +2c6(k]i} cos (kx) dk = ln% for |lx| <b

0

(14)

which are proved in the Appendix, and also the integrals

1 X
wJ,,(bk - <
f 2n( bk) sin (kx ) dk = { sin (Znarcsmb) forO0<x<b (15)
‘ 0 for x> b
1 x
—— COS (Zn arcsin—) for0<x<b
= J5,( bk) 2n b
j cos (kx) dk = (-1)" p2n (16)
0 > for x > b
2n (x +v/x2 = b2 )
Let us now put which are particular cases of the Weber—Schatheitlin
A(k) = B(k) = B(k) {1-n(k)} 1ntegral [10, p. 743]. By means of these relations equation
e coth (kh )+ e coth(kh,) € +¢, (11) is identically satisfied and relation (10) provides
(7) 2
Here Z b,cosng = (e, +€,)Vy— Z1in )
RGN ne1 moAb
+f B(k)n(k)cos(kbsin—)dk,
2e, o~ 2khy 2, o~ 2kh> 0 2
£(k) = 5t ;- (9) pe(—mm) (17)

€, te 1—e €,+e, 1—e
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where x = bsin(p /2) and ¢ €(— 7, 7). We use also the
relation

‘P o0
cos(kbsini) =Jo(kb)+2 Y. I, (bk)cos(me). (18)
m=1
Relation (17) yields

0 2 *®
(e, +€)Vy— %—ln(z) +f0 B(k)n(k)Jy(bk)dk =0
(19)
bp=2 B(k) T (bl (k) dk. (20)
0

Taking into account expression (20) for the coefficients

b,,, relation (12) yields the following infinite system of
linear equations:
bm=QOam+ Z amnbn’ m~1’27 (21)
n=1
Here we have denoted
2 wJy(bk)JT,,(bk
A TV on(BE) o3 e m=12,---
™ J k
(22)
w Ty, (k) T, ( bk
@ =41 [ (B ) T )n(k)dk, mn=1,2,--
0 k
(23)
Relation (19) can be written in the form
9o 2 1
(61+62)V0—;1n E +Eb0=0 (24)
where
bo=2[ B(k)Jo(bk)n(k) dk. (25)
0
By using expression (12) we get
by=qoag+ Y @o,b,. (26)
n=1
Here
2 ( A JE(Bl)n(k)—1 w J2(bk)
=k k
aq W{L p d +L - n()dk+c}
(27)

and the coefficients a,,, are also defined by relation (23).

Relation (21) suggests to us to put b,=g.b(n=
0,1, - ). Finally, formula (24) gives the strip capacitance
C in the form

2(e; +¢€,)

C=2_..1—2 (28)
—In2- b,
T
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TABLE 1
ht 0.075 0.1 0.125 0.250 0.5 1
C 1422 10.883 8.8825 4.88254 2.882245 1.875541
C, 1225 9.775 8.1568 4.75261 2.870641 1.874973
C; 1454 10905 8.8781 4.88248 2.882238 1.875541
C, 1456 10.907 8.8784 4.88254 2.882245 1.875541
where
by=do+ X dy,b, (29)
n=1
b,=d,+ Y a,b, (m=12,--) (30)
n=1

_ 2 aJg(k)n(k/b)—1
a0=;{f0 - dk

+/:°J0§ck)n(g)dk+c} (31)
m_%ﬂww"(g)d" (m=1,2,--")
(32)
Do k)on(k) (K
mn=4n/0 dk———’r](g)dk
(m=0,1,---;n=1,2,---). (33)

" The effective evaluation of integrals (31)—(33) will be

done numerically by using the Gauss—-Laguerre formula.

IV. NuMERICcAL RESULTS

In order to see how formula (28) works, we considered
the particular case of the symmetrical structure (4, = &,
= h). In this case a finite analytical expression for the line
capacitance is available [9]:

C K(k) wh .
_2K(k’)’ k—tanhZh,k—vl k* (34)
K(k) being the complete elliptical integral of the first
kind.

In Table I we compared the exact values C of the
capacitance given by formula (34) with approximate val-
ues Cy, C,, and C, obtained by using formula (28) and
the approximate solution of the infinite system (30) for
various values of the ratio A* = h /(2b). We denoted by
C, the value obtained by taking b, = d,. C, stands for the
approximate value resulting when a single (first) equation
in the infinite system (30) is used (b, = 0, j>1), and C, is
the capacitance following from relations (28) and (29) in
the case where system (30) is truncated by considering
only the first two equations (b, =0, j > 3).

We remark that formula (28) for the case where

€1+€2

aga
= - 0191
by=d,+

35
l_dll ( )

yields approximate values for the capacitance with an
error of about 2% for h*=0.075, 0.2% for h*=0.1,
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0.05% for h*=0.125, and 0.001% for A* = 0.25. From a
practical viewpoint formulas (28) and (35) are sufficient

for determining the strip capacitance for cases where
min (4, h,) > 0.15b.

V. CONCLUSIONS

This paper has presented an analytical method for
studying microstrip transmission lines in a quasi-static
approximation,

The capacitance of the microstrip line is expressed in
terms of the solution of an infinite system of linear equa-
tions. The numerical examples considered in the paper
have pointed out that in practical cases it is sufficient to
consider only the first equation in the system. This gives
an approximate formula for the capacitance by substitut-
ing the value of b, given by formula (35) into relation (28).

APPENDIX

Let us determine the Fourier transform of the function

Jo(bk)

—H +2c¢8(k). (A1)
Here the distribﬁtion sense is assumed [11], [12]. We have
To(bk) [ To(bk)—1 1
‘7{ 20K 05(")}_‘?{ 20K }+‘7{ 21k|}+c
(A2)
where

» 1 ¢(k)—¢(0) o(k)
k ——dk + —dk

[ ot dk /1k|<1 k%t A
(A3)

Here (p(k) is a test function and F{ } denotes-the Fourier
transform.
We also have [10], [12]

= J,(bk) -1

- e'“* dk =In Ad
fo k o +Vo? + b2 (A4)
1
— =1 —c. AS
7| ) == 43
Relations (A2); (A4), and (A5) give
= [ To( k) 2
f {T+2c8(k)}coskwdk=lng for [w| < b.
0 / '
\ (A6)
By using relation (A4) we also get
f { To(k) +2c6(k)} sin ko dk
Y]
- .
—2—sgna) for jw| < b
= w (A7)
arcsing for |w| > b.
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