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An Analytical Solution to the Microstrip
Line Problem

DOREL HOMENTCOVSCHI

Abstract —An analytical method to determine the capacitance of mi-

crostrip lines in an inhomogeneous medium is presented. The capaci-

tance is expressed in terms of the solution of au infinite system of linear

equations. The numerical examples included provide a very good ap-

proximation for cases of practical interest.

I. INTRODUCTION

M ICROSCOPIC transmission lines have been the

subject to theoretical and experimental investiga-

tion for more than 30 years. Although the literature on

this subject is extensive, analytical exact solutions, for the

case when two different dielectrics are present, have

received consideration only recently [13], [14].

It is well known that in the case of nonhomogeneous

dielectrics microstrip lines do not support a TEM mode.

However, for frequencies that are not too high (in the

“quasi-static limit”), the propagation can be thought of as

approximately TEM. In this paper we consider this quasi-

TEM mode.

Let us first briefly review some theoretical methods

relating to a microstrip line with two dielectrics. Wheeler

[1] used approximate conformal mapping and an interpo-

lation technique to calculate the capacitance of a mixed

dielectric media microstrip. Sylvester [2] and Bryant and

Weiss [3] treated the dielectric vacuum boundary by means

of a dielectric Green’s function. Yamashita and Mittra [4]

presented an analysis based on a variational principle,

Analyses of various planar transmission lines have been

carried out in the spectral domain by Itoh and Mittra [5]

and Itoh [6]. Poh et al. [7] considered the solution for the

line capacitance of a microstrip line by means of a spec-

tral-domain analysis method.

The present paper provides a new analytical method

for determining the line capacitance of a microstrip line.

The solution is exact but it is expressed by means of the

solution of an infinite system of linear equations whose
coefficients are the result of certain numerical quadra-

ture. The analysis is carried out for the case of two

dielectric substrates. Changes to include additional strati-

fied layers are readily available using the transfer matrix

method described in [8].
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Comparison of the results obtained by using the pro-

posed formula with those obtained by exact formulas

(available in particular cases) shows that in cases of prac-

tical interest it is sufficient to consider only the first two

equations in the above-mentioned infinite set of linear

equations.

II. PROBLEM FORMULATION

The cross section of the shielded microstrip line to be

analyzed in this paper is shown in Fig. 1. It consists of a

conducting strip of zero thickness placed on a dielectric

substrate (on the [ – b, b] segment of the OX axis) between

two parallel ground planes. The relative dielectric con-

stants, ●l and El, and the dielectric thicknesses, hl and

Izz, are arbitra~. In particular, as h ~- w we obtain the

open microstrip.

We consider the solution of the microstrip problem in

the “quasi-static” approximation, i.e., for the frequency
range in which propagation may be regarded as approxi-

mately TEM. For the microstrip dimensions and substrate

materials frequently used in integrated microwave circuit

technology, the quasi-TEM approximation is valid in the

range extending to the low gigahertz region. For higher

frequencies, the solution can be taken as the basis for

solving the full propagation problem.

In the quasi-TEM state, the electric field in domains

DI and Dz can be expressed with the aid of the electro-

static potentials V(lJ(X, y) and V(2)(X, y). We write

J“-(’)(~,Y) =fm ‘in::~;h-‘)cos(~)~~ (1)
1

J’-(2)(XY) =pm‘in::f;h+y)cos(~)dk. (2)
2

The functions P’(l) (x,y) and V(z)(x, y) vanish on the

planes y = hl and y = – h2, respectively, and satisfy the

potential continuity condition on the circuit plane y = O.

We also have

/m@t)COS(kx)dk=VO, -b<x<b (3)
o

VO being the potential of the strip.
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Fig. 1. Geometry of the problem.

The charge density p(x) on the plane y = O is given by

the formula

fiv(l) JV(2)

=/mM(k){~lcoth( khl)+e,coth(kh2)} COs(b)dk.
o

(4)

Since the function p(x) vanishes on the semiaxis
(– co, – b) (b, CO)relation (4) yields

/mA(k){elcoth(khl) +,,coth(kh,)} sin(h) dk
o

qo
——sgnx,—

2
X=(–co, -b)u(b, ca) (5)

where sgn’x = – 1 for x <0 and sgn x = 1 for x >0. In

obtaining relation (5) we took into account the even

character of the function p(x). Hence

J’ fi~)~=qo (6)
–b

where qO is the total charge of the strip.

The functions l(k) and q(k) decay exponentially for large

values of the variable k.
Equations (3) and (41)become

fmB(k)cos(h)dlc= (e,+.2)vo
o

+fk)wcoswdk,
o

–b<x<b (lo)

/mB(k)sin(b)dk= $sgnx
o

forxc(–~, –b)u(b, ~). (11)

Relations (10) and (11 ) are the dual integral equations of

the problem.

III. SOLUTION OF THE INTEGRAL EQUATIONS

We look for the solution of the dual integral equations

(10) and (11) in the form

(12)

where 8(k) is the Dkac function, c = 0.577216 . . . is the

Edler constant, and b. are real coefficients to be deter-

mined. In fact, the form (12) of the solution can be

olltained by means of certain intricate mathematical con-

siderations concerning the Riemann boundary-value prob-

lem equivalent to the ciual integral equations (10) and (11).

We use now the relations

cc Jo(bk)

J{ }
+2c8(k) sin(b) dk = ~ sgnx

o k

for 1x1> b (13)

co Jo(bk)

/( )

(
— +2c8(k)l cos(kx) dk = ln~ for 1x1<b

o k

which are proved in the Appendix,

r1

(

x

2n
cos 2n arcsin —

mJ,.( bk) b )

J k
cos(kx)dk= (_l)”

o
b2n

2n (x +/-)2”

for O<x<b

lorx>b

(14)

and also the integrals

(15)

(16)

Let us now put

B(k)
which are particular cases of the Weber–Schafheitlin

A(k) = = !?..!?_{ 1 _ ~( k) ) integral [10, p. 743]. By means of these relations equation
elcoth(khl) + e2coth(kizJ – .s1+.s2 (11) is identically satisfied and relation (10) provides

Here
~(k)

‘(k)= I+l(k)

2E1 ~–2kh1 2E2
J(k)=— +—

El + 62 1– e–2khl Cl + e2

(7)

()
~ b.cosnp=(~, +e2)Vo-~ln ~

~=1
(8)

e –2kh2 ()

+/m&( k)q(k)cos kbsin~ dk,
o

~_e-2kh2”
(9)

$PG(-r,’i’r) (17)
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where x = b sin(q\2) and q ● ( – m, r). We use also the

relation

( 2)
cos kbsin: = JO(kb) +2 ~ .lz~(bk)cos(rnp). (18)

~=1

Relation (17) yields

2

OJ
(el+e,)VO–~ln ~ + ‘B(k) q(k).To(bk)dk=O

o

(19)

bn = 2f%(k)J2n(bk)q(k) dk. (20)
o

Taking into account expression (20) for the coefficients

bn, relation (12) yields the following infinite system of
linear equations:

b~ = qoa~ + ~ a~nbn, rn=l,2, ”””. (21)
~=1

Here we have denoted

2

J

mJo(bk).T2~(bk)
a.=—

Tro k
q(k) dk,

J
mJznz(bk)J2n(bk)

a ~~ = 4n
k

q(k) dk,
o

m=l, z,...

(22)

m,n=l,2, .”..

(23)

Relation (19) can be written in the form

2

()
(el+e2)V0-~ln ~ +~bo=O (24)

where

b.= 2~ml?(k)Jo(bk)T/(k) dk. (25)

By using expression (12) we get

cm

b.= qoao + ~ ao~b.. (26)
~=1

Here

2

(J

1.7#(bk)q(k)-l

J

mJ:(bk)
ao=— dk +

TO k
—q(k) dk + C

1 k }
(27)

and the coefficients ao~ are also defined by relatiog (23).

Relation (21) suggests to us to put b.= qob.(n =

0,1,”’” ). Finally, formula (24) gives the strip capacitance
C in the form

2(61+62)
c=

~ln2–50
T

(28)

TABLE I

W 0.075 0.1 0.125 0.250 0.5 1
C 14.22 10.883 8.8825 4.88254 2.882245 1.875541
CO 12.25 9.775 8.1568 4.75261 2.870641 1.874973
c1 14.54 10.905 8.8781 4.88248 2.882238 1.875541
c, 14.56 10.907 8.8784 4.88254 2.882245 1.875541

where
.

~=1

.

~=1

2

(J

lJ:(k)q(k/b)–l
~o=—

k
dk

n-o

/

~J;(k)
+

() 1
—q ; dk + c (31)

1 k

2

J

~Jo(k)J2m(k)
(.?m=—

k ()
q;dk (m=l,2,. ”)

?TIj

(32)

~J2.(k)J2m(k)
imn = 4n/

o k ()
q;dk

(rn=(),l,...; n=l,2) .-). (33),..

The effective evaluation of integrals (31)-(33) will be

done numerically by using the Gauss–Laguerre formula.

IV. NUMERICAL RESULTS

In order to see how formula (28) works, we considered

the particular case of the symmetrical structure (lzl = lz2

= h). In this case a finite analytical expression for the line

capacitance is available [9]:

c =2 K(k)
— —

K(k’) ‘
k = tanh~,k’=~~ (34)

El + E2

K(k) being the complete elliptical integral of the first

kind.

In Table I we compared the exact values C of the

capacitance given by formula (34) with approximate val-

ues Co, Cl, and Cz obtained by using formula (28) and

the approximate solution of the infinite system (30) for

various values of the ratio h* =_h /(2 b). We denoted by
CO the value obtained by taking b.= do. Cl stands for the

approximate value resulting when a single (first) equation

in the infinite system (30) is used (jj = O, j > 1), and C2 is

the capacitance following from relations (28) and (29) in

the case where system (30) $ truncated by considering

only the first two equations (bO = O, j > 3).

We remark that formula (28) for the case where

iioltil
20=tio+—

1 – dll
(35)

yields approximate values for the capacitance with an

error of about 2% for h* = 0.075$ 0.2$% for /z* = 0.1,
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0,05’%0 for h*= 0,125, and 0.001% for h’= 0.25. From a

practical viewpoint formulas (28) and (35) are sufficient

for determining the strip capacitance for cases where

min(hl, hJ > 0.15b.

V. CONCLUSIONS

This paper has presented an analytical method for

studying microstrip transmission lines in a quasi-static

approximation.

The capacitance of the microstrip line is expressed in

terms of the solution of an infinite system of linear equa-

tions. The numerical examples considered in the paper

have pointed out that in practical cases it is sufficient to

consider only the first equation in the system. This gives

an approximate formula for the capacitance by substitut-

ing the value of $0 given by formula (35) into relation (28).

APPENDIX

Let us determine the Fourier transform of the function

Jo(bk)
—+2c8(rt).

Ikl
(Al)

Here the distribution sense is assumed [11], [12]. We have

~ Jo(bk)

( w+c’(k)}’@(’O(::l-l} +@{&}+c
(A2)

where

Jm L (p(k) dk =~ ‘(k)l;lq(o) dk +fkl>l~dk
-a, \kl \kl <1

(A3)

Here q(k) is a test function and W{ } denotes-the Fourier

transform.

We also have [101, [121

J
~Jo(bk)–l

e’”kdk = In
o k @+ V& ‘A4)

1
@

(}
— =–lnlol–c.
21k1

(M)

Relations (A2), (A4), and (A5) give

cm Jo( bk)

J{ )
— +2c~(k) cosk~dk = In; for IWI < b.

o k

(A6)

By using relation (A4) we also get

m Jo(bk)

1( )
— +2c8(k) sinkwdk

o k

{

~ sgn u for 10] < b
——

w
(A7)

arc sin — for 1~1> b.
b
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